Zur Berechnung der freien Mischungsenthalpie und der Aktivitätskoeffizienten beschränkt mischbarer Systeme aus der Löslichkeitskurve

Von

A. Neckel

Aus dem Institut für Physikalische Chemie der Universität Wien

Mit 7 Abbildungen

(Eingegangen am 24. Februar 1961)

Die in dieser Arbeit vorgeschlagene Methode gestattet, die Änderungen der freien Zusatzenthalpie mit der Konzentration $\left(\frac{\partial \Delta G_z}{\partial x}\right)$ bei der kritischen Lösungstemperatur auf Grund der Löslichkeitskurve beschränkt mischbarer Systeme innerhalb des Konzentrationsbereiches der Mischungslücke zu berechnen, soferne Daten für die Zusatzentropie ΔS_z und für die Zusatzwerte zu den Molwärmen $\Delta C_{p,z}$ bekannt sind. Durch numerische Integration von $\left(\frac{\partial \Delta G_z}{\partial x}\right)$ erhält man die Werte für die freie Zusatzenthalpie ΔG_z bei der kritischen Lösungstemperatur.

Die Methode wird zur Berechnung von ΔG_z der Systeme n-Pentan—Aceton und Nickel—Gold herangezogen. An diesen Beispielen wird der Einfluß der näherungsweisen Vernachlässigung von ΔS_z und $\Delta C_{p,z}$ untersucht.

Bei dem System n-Pentan—Aceton stimmen die nach dieser Methode erhaltenen Werte mit den aus Dampfdruckmessungen gewonnenen innerhalb der Fehlergrenzen vollkommen überein. Die Vernachlässigung von ΔS_z bzw. $\Delta C_{p,z}$ führt hier lediglich zu einem Fehler von weniger als 2%.

Die für das System Nickel—Gold erhaltenen ΔG_z -Werte sind niedriger als die von *Seigle, Cohen* und *Averbach* auf Grund elektromotorischer Kräfte berechneten. Die Vernachlässigung von ΔS_z und $\Delta C_{p,z}$ bedingt hier einen Fehler von etwa 10%.

I. Einleitung

Für eine Vielzahl chemischer Probleme ist die Kenntnis der freien Mischungsenthalpie ΔG_m und der Aktivitätskoeffizienten binärer Mischungen von großer Bedeutung. Diese thermodynamischen Größen können aus Messungen von Gleichgewichtszuständen, wie z. B. von Dampfdrucken, elektromotorischen Kräften, aus Schmelzkurven usw. gewonnen werden. Vielfach hat man auch versucht, Aktivitätskoeffizienten aus der gegenseitigen Löslichkeit der beiden Phasen beschränkt mischbarer Systeme zu berechnen¹. Bei den meisten Versuchen dieser Art stellt man die Logarithmen der Aktivitätskoeffizienten durch eine Reihenentwicklung dar, z. B. bedient man sich der Ansätze von Margules, van Laar, Scatchard, Borelius oder anderer. Auf Grund der Bedingung, daß die Aktivitäten jeder Komponente in den beiden koexistierenden Phasen gleich sein müssen, erhält man Beziehungen, aus denen sich mit Hilfe der experimentell gegebenen Löslichkeiten die Konstanten der Reihenentwicklung berechnen lassen.

Diese Methoden setzen voraus, daß die Ansätze für die Aktivitätskoeffizienten das reale Verhalten exakt wiederzugeben vermögen. Dies wird jedoch bei den großen, die teilweise Entmischung hervorrufenden Abweichungen vom idealen Verhalten nur in sehr grober Näherung der Fall sein. Ferner werden häufig die Konstanten als temperaturunabhängig angesehen. Trotz dieser Nachteile hat man die relativ große Rechenarbeit nicht gescheut, um auf diesem Wege zu Näherungswerten für die freie Mischungsenthalpie und für die Aktivitätskoeffizienten zu gelangen.

Um so wünschenswerter erscheint es daher, Verfahren zu entwickeln, die auf Grund rein thermodynamischer Betrachtungen und ohne Benützung von Näherungsansätzen für die Aktivitätskoeffizienten die freie Zusatzenthalpie zu berechnen gestatten. In der Literatur sind nur wenige Vorschläge dieser Art bekannt. So versuchte z. B. *E. Scheil*², unter der Annahme idealer Mischungsentropie thermodynamische Daten aus den Löslichkeitskurven teilweise mischbarer Systeme zu gewinnen. Kürzlich hat *F. Kohler*³ ein Verfahren zur Berechnung der freien Zusatzenthalpie ΔG_z aus der Löslichkeitskurve vorgeschlagen.

Im folgenden wird eine Methode angegeben, mit deren Hilfe man die freie Zusatzenthalpie und die Aktivitätskoeffizienten beschränkt mischbarer binärer Systeme auf Grund der Löslichkeitskurve voraussetzungsfrei berechnen kann.

¹ Vgl. z. B.: G. Scatchard und W. J. Hamer, J. Amer. chem. Soc. 57, 1805 (1935); G. Borelius, Ann. Phys. 28, 507 (1937); A. P. Colburn und E. M. Schoenborn, Trans. Amer. Inst. Chem. Eng. 41, 421 (1945); H. C. Carlson und A. P. Colburn, Ind. Engng. Chem. 34, 581 (1942).

² E. Scheil, Z. Elektrochem. 49, 242 (1943).

³ F. Kohler, Mh. Chem. 88, 388 (1957).

II. Ableitung der Berechnungsmethode

A. Neckel:

Die Konzentrationen der bei der Temperatur T (°K) miteinander im Gleichgewicht stehenden Phasen seien x^{I} und x^{II} . Das thermodynamische Gleichgewicht fordert die Gleichheit der chemischen Potentiale jeder Komponente in den beiden Phasen (I u. II).

$$\mu_1^{I} = \mu_1^{II} \text{ und } \mu_2^{I} = \mu_2^{II}.$$
 (1)

Diese Bedingungen lassen sich ausdrücken durch:

$$\begin{split} \Delta G_m \left(T, x^{\mathrm{I}} \right) &- x^{\mathrm{I}} \cdot \frac{\partial \Delta G_m \left(T, x^{\mathrm{II}} \right)}{\partial x} = \Delta G_m \left(T, x^{\mathrm{II}} \right) - x^{\mathrm{II}} \cdot \frac{\partial \Delta G_m \left(T, x^{\mathrm{II}} \right)}{\partial x}, \quad (2 \mathrm{a}) \\ \Delta G_m \left(T, x^{\mathrm{I}} \right) + \left(1 - x^{\mathrm{I}} \right) \cdot \frac{\partial \Delta G_m \left(T, x^{\mathrm{II}} \right)}{\partial x} \\ &= \Delta G_m \left(T, x^{\mathrm{II}} \right) + \left(1 - x^{\mathrm{II}} \right) \cdot \frac{\partial \Delta G_m \left(T, x^{\mathrm{II}} \right)}{\partial x}, \quad (2 \mathrm{b}) \\ & \vdots \qquad \partial \Delta G_m \left(T, x^{\mathrm{II}} \right) = \partial \Delta G_m \left(T, x^{\mathrm{II}} \right) \quad (2 \mathrm{b}) \end{split}$$

 $_{\rm mit}$

$$\frac{\partial \Delta G_m(T, x^{\mathrm{I}})}{\partial x} = \frac{\partial \Delta G_m(T, x^{\mathrm{II}})}{\partial x}.$$
(3)

 $\Delta\,G_m\,(T,x^{\rm I})$ bedeutet die molare freie Mischungsenthalpie bei der Temperatur T und dem Molenbruch x der Phase I.

 ΔG_m läßt sich aufspalten in einen Beitrag entsprechend idealem Verhalten ΔG_{id} und einen Zusatzbeitrag ΔG_z :

$$\Delta G_m(T,x) = \Delta G_{id}(T,x) + \Delta G_z(T,x)$$
(4)

 $\Delta G_z(T,x)$ hängt mit dem Wert von ΔG_z bei der kritischen Lösungstemperatur T_c über nachfolgende Beziehung zusammen:

$$\Delta G_{z}(T,x) = \Delta G_{z}(T_{c},x) - (T-T_{c}) \cdot \Delta S_{z}(T_{c},x) - \int_{T_{c}}^{T} \mathrm{d}T \int_{T}^{T} \frac{\Delta C_{p,z}(x)}{T} \cdot \mathrm{d}T$$
(5)

worin ΔS_z (T_c, x) die Zusatzentropie bei der kritischen Lösungstemperatur für den Molenbruch x und $\Delta C_{p,z}(x)$ den Zusatzbeitrag zu dem Additivwert der spezifischen Wärmen für den Molenbruch x bedeuten. Differenziert man $\Delta G_m(T, x^{II})$ bei konstanter Temperatur nach dem Molenbruch x, so erhält man

$$\frac{\partial \Delta G_m \left(T, x^{\mathrm{II}}\right)}{\partial x} = \frac{\partial \Delta G_{\mathrm{id}} \left(T, x^{\mathrm{II}}\right)}{\partial x} + \frac{\partial \Delta G_z \left(T_c, x^{\mathrm{II}}\right)}{\partial x} - (T - T_c) \cdot \frac{\partial \Delta S_z \left(T_c, x^{\mathrm{II}}\right)}{\partial x} - \int_{T_c}^{T} \mathrm{d}T \int_{T_c}^{T} \frac{\partial}{\partial x} \left\{ \frac{\Delta C_{p, z} \left(x^{\mathrm{II}}\right)}{T} \right\} \mathrm{d}T \,.$$

$$(6)$$

$$\begin{split} \Delta G_{\mathrm{id}}\left(T,x^{\mathrm{I}}\right) &+ \Delta G_{z}\left(T_{e},x^{\mathrm{I}}\right) - \left(T - T_{e}\right) \cdot \Delta S_{z}\left(T_{e},x^{\mathrm{I}}\right) - \int_{T_{e}}^{1} \mathrm{d}T \int_{T_{e}}^{1} \frac{\Delta C_{p,z}\left(x^{\mathrm{I}}\right)}{\mathrm{T}} \mathrm{d}T \\ &- x^{\mathrm{I}} \left\{ \frac{\partial \Delta G_{\mathrm{id}}\left(T,x^{\mathrm{II}}\right)}{\partial x} + \frac{\partial \Delta G_{z}\left(T_{e},x^{\mathrm{II}}\right)}{\partial x} - \left(T - T_{e}\right) \frac{\partial \Delta S_{z}\left(T_{e},x^{\mathrm{II}}\right)}{\partial x} \right. \\ &- \int_{T_{e}}^{T} \mathrm{d}T \int_{T_{e}}^{T} \frac{\partial}{\partial x} \left[\frac{\Delta C_{p,z}\left(x^{\mathrm{II}}\right)}{T} \right] \mathrm{d}T \right\} \\ &= \Delta G_{\mathrm{id}}\left(T,x^{\mathrm{II}}\right) + \Delta G_{z}\left(T_{e},x^{\mathrm{II}}\right) - \left(T - T_{e}\right) \cdot \Delta S_{z}\left(T_{e},x^{\mathrm{II}}\right) \\ &- \int_{T_{e}}^{T} \mathrm{d}T \int_{T_{e}}^{T} \frac{\Delta C_{p,z}\left(x^{\mathrm{II}}\right)}{T} \mathrm{d}T - x^{\mathrm{II}} \cdot \left\{ \frac{\partial \Delta G_{id}\left(T,x^{\mathrm{II}}\right)}{\partial x} \right. \\ &+ \frac{\partial \Delta G_{z}\left(T_{e},x^{\mathrm{II}}\right)}{\partial x} - \left(T - T_{e}\right) \frac{\partial \Delta S_{z}\left(T_{e},x^{\mathrm{II}}\right)}{\partial x} \\ &- \int_{T_{e}}^{T} \mathrm{d}T \int_{T_{e}}^{T} \frac{\partial}{\partial x} \left[\frac{\Delta C_{p,z}\left(x^{\mathrm{II}}\right)}{T} \right] \mathrm{d}T \right\}. \end{split}$$

Gleichung (7) führt umgeformt zu

$$\begin{split} \Delta G_{z}\left(T_{c},x^{\mathrm{II}}\right) &- \Delta G_{z}\left(T_{c},x^{\mathrm{I}}\right) - \left(x^{\mathrm{II}} - x^{\mathrm{I}}\right) \frac{\partial \Delta G_{z}\left(T_{c},x^{\mathrm{II}}\right)}{\partial x} - \left\{\Delta G_{\mathrm{id}}\left(T,x^{\mathrm{I}}\right) \\ &- \Delta G_{\mathrm{id}}\left(T,x^{\mathrm{II}}\right) + \left(x^{\mathrm{II}} - x^{\mathrm{I}}\right) \cdot \frac{\partial \Delta G_{\mathrm{id}}\left(T,x^{\mathrm{II}}\right)}{\partial x} + \left(T - T_{c}\right) \\ &\cdot \left[\Delta S_{z}\left(T_{c},x^{\mathrm{II}}\right) - \Delta S_{z}\left(T_{c},x^{\mathrm{II}}\right)\right] - \left(x^{\mathrm{II}} - x^{\mathrm{I}}\right) \cdot \left(T - T_{c}\right) \\ &\cdot \frac{\partial \Delta S_{z}\left(T_{c},x^{\mathrm{II}}\right)}{\partial x} + \int_{T_{c}}^{T} \mathrm{d}T \int_{T_{c}}^{T} \frac{\Delta C_{p,z}\left(x^{\mathrm{II}}\right)}{T} \,\mathrm{d}T \\ &- \int_{T_{c}}^{T} \mathrm{d}T \int_{T_{c}}^{T} \frac{\Delta C_{p,z}\left(x^{\mathrm{II}}\right)}{T} \,\mathrm{d}T - \left(x^{\mathrm{II}} - x^{\mathrm{I}}\right) \int_{T_{c}}^{T} \mathrm{d}T \int_{T_{c}}^{T} \frac{\partial C_{p,z}\left(x^{\mathrm{II}}\right)}{T} \right] \mathrm{d}T \Big\}. \end{split}$$
(8)

Bezeichnet man den Ausdruck in der geschlungenen Klammer mit f, so gelangt man zu:

$$\Delta G_z \left(T_c, x^{\mathrm{II}} \right) - \Delta G_z \left(T_c, x^{\mathrm{I}} \right) - \left(x^{\mathrm{II}} - x^{\mathrm{I}} \right) \cdot \frac{\partial \Delta G_z \left(T_c, x^{\mathrm{II}} \right)}{\partial x} - f = 0.$$
(9)

Nun kann man $[\Delta G_z (T_c, x^{\Pi}) - \Delta G_z (T_c, x^{I})]$ durch das Integral $\int_{x^{I}}^{x^{\Pi}} \frac{\partial \Delta G_z (T_c)}{\partial x} dx \text{ ersetzen. Gleichung (9) geht damit über in}$ $\int_{x^{I}}^{x^{\Pi}} \frac{\partial \Delta G_z (T_c)}{\partial x} dx - (x^{\Pi} - x^{I}) \cdot \frac{\partial \Delta G_z (T_c, x^{II})}{\partial x} - f = 0.$ (10)

A. Neckel:

Trägt man in einem Diagramm $\frac{\partial \Delta G_z (T_c)}{\partial x}$ gegen den Molenbruch auf (siehe Abb. 1), so entspricht die Fläche ACDE dem Integral in Gleichung (10), die Fläche ABDE dem Term $(x^{II} - x^{I}) \frac{\partial \Delta G_z (T_c, x^{II})}{\partial x}$ und die Fläche BCD der Größe f.

Sind alle zur Berechnung von f benötigten Größen bekannt, so läßt sich $\frac{\partial \Delta G_z(T_e)}{\partial x}$ auf Grund von (10) für den Konzentrationsbereich, in dem die Löslichkeitskurve bekannt ist, bestimmen. Für die nachfolgenden Rechnungen bedarf es noch einer weiteren Beziehung. Aus den Gleichungen (3a) und (3b) ergibt sich:

$$\frac{\partial \Delta G_z \left(T_c, x^{\mathrm{I}}\right)}{\partial x} = \frac{\partial \Delta G_z \left(T_c, x^{\mathrm{II}}\right)}{\partial x} + d, \tag{11}$$

wobei mit d der Ausdruck

$$d = \frac{\partial \Delta G_{\rm id}(T, x^{\rm II})}{\partial x} - \frac{\partial \Delta G_{\rm id}(T, x^{\rm I})}{\partial x} - (T - T_{\rm c}) \cdot \left[\frac{\partial \Delta S_z(T_{\rm c}, x^{\rm II})}{\partial x}\right] \\ - \frac{\partial \Delta S_z(T_{\rm c}, x^{\rm I})}{\partial x} - \int_{T_{\rm c}}^{T} dT \int_{T_{\rm c}}^{T} \frac{\partial}{\partial x} \left[\frac{\Delta C_{p, z}(x^{\rm II})}{T}\right] dT$$
(12)
$$+ \int_{T_{\rm c}} dT \int_{T_{\rm c}} \frac{\partial}{\partial x} \left[\frac{\Delta C_{p, z}(x^{\rm I})}{T}\right] dT$$

abgekürzt wird.

Ferner sei der Wert von $\frac{\partial \Delta G_z(T_c)}{\partial x}$ für die kritische Konzentration x_c mit c bezeichnet:

$$\frac{\partial \Delta G_z\left(T_c, x_c\right)}{\partial x} \equiv c.$$

Man entnimmt nun aus der Löslichkeitskurve für verschiedene Temperaturen, in möglichst kleinen Intervallen, die Konzentrationen der koexistierenden Phasen und numeriert sie, beginnend mit dem der kritischen Konzentration x_c am nächsten liegenden Wertepaar, durch (vgl. Abb. 2).

Für jedes Wertepaar $x_{(i)}^{\text{I}}$, $x_{(i)}^{\text{II}}$ berechnet man die Größe f_i [vgl. Gl. (8) u. (9)] und auf Grund von (12) den zugehörigen Wert von d_i . Die Differenz zwischen $\frac{\partial \Delta G_z (T_c, x_c)}{\partial x}$ und $\frac{\partial \Delta G_z (T_c, x_{(1)}^{\text{II}})}{\partial x}$ sei b_1 ; die zwischen aufeinanderfolgenden Werten $\frac{\partial \Delta G_z (T_c, x_{(i-1)}^{\text{II}})}{\partial x}$ und $\frac{\partial \Delta G_z (T_c, x_{(i)}^{\text{II}})}{\partial x}$ sei b_i (vgl. Abb. 3); d. h. $\frac{\partial \Delta G_z (T_c, x_{(1)}^{\text{II}})}{\partial x} = \frac{\partial \Delta G_z (T_c, x_{(i-1)})}{\partial x} - b_1 = c - b_1$ und $\frac{\partial \Delta G_z (T_c, x_{(i)}^{\text{II}})}{\partial x} = \frac{\partial \Delta G_z (T_c, x_{(i-1)}^{\text{II}})}{\partial x} - b_i.$

Für $\frac{\partial \Delta G_z(T_c, x_{(i)}^{\text{II}})}{\partial x}$ erhält man dann:

$$\frac{\partial \Delta G_z \left(T_c, x_{(i)}^{\mathrm{II}}\right)}{\partial x} = c - \sum_{k=1}^{k=i} b_k.$$
(13)

Die Größen b_i lassen sich mit guter Näherung aus den Werten von f_i , f_{i-1} und d_i berechnen. Zu diesem Zwecke ersetzt man die Flächen f_i durch Trapeze (vgl. Abb. 3). Da $\frac{\partial \Delta G_z}{\partial x}$ nahezu linear ist und im allgemeinen keine starken Krümmungen aufweist, wird sich diese Näherung, bei hinlänglich kleiner Intervallbreite, stets ohne nennenswerte Fehler anwenden lassen.

Auf Grund einer einfachen geometrischen Betrachtung ergibt sich

$$b_{1} = \frac{2 \cdot f_{1} - (x_{c} - x_{(1)}^{\mathrm{I}}) \cdot d_{1}}{(x_{(1)}^{\mathrm{II}} - x_{(1)}^{\mathrm{II}})}$$
(14a)

und

$$b_{i} = \frac{2(f_{i} - f_{i-1}) - (x_{(i-1)}^{\mathrm{I}} - x_{(i)}^{\mathrm{I}}) \cdot (d_{i} + d_{i-1})}{(x_{(i)}^{\mathrm{II}} - x_{(i)}^{\mathrm{I}}) + (x_{(i-1)}^{\mathrm{II}} - x_{(i-1)}^{\mathrm{I}})}.$$
 (14b)

Der noch unbekannte Wert von $c\left(c = \frac{\partial \Delta G_z(T_c, x_c)}{\partial x}\right)$ kann auf Grund zweier bekannter Werte für $\Delta G_z(T_c)$ innerhalb des Konzentrationsbereiches der Mischungslücke bestimmt werden. Sind solche nicht vorhanden,

Abb. 3. Schematische Darstellung zur Ableitung der Gl. (14a) und (14b)

so geht man wie folgt vor: Man wählt für c zunächst einen willkürlichen Wert c' und berechnet nach Gl. (13) Werte für $\left(\frac{\partial \Delta G_z(T_c, x_{(i)}^{\mathrm{II}})}{\partial x}\right)'$, die natürlich alle um den konstanten Betrag c' - c = a von den richtigen Werten $\frac{\partial \Delta G_z(T_c, x_{(i)}^{\mathrm{II}})}{\partial x}$ abweichen. Nach Gl. (11) erhält man mit den bekannten Werten für d_i die zugehörigen Werte von $\left(\frac{\partial \Delta G_z(T_c, x_{(i)}^{\mathrm{II}})}{\partial x}\right)'$.

Um a zu bestimmen, geht man zweckmäßigerweise von der Bedingung aus:

$$\int_{x=0}^{x=1} \frac{\partial \Delta G_z \left(T_e\right)}{\partial x} \, \mathrm{d}x = 0.$$
(15)

Wegen $\Delta G_z = 0$ für x = 0 und x = 1 verschwindet das Integral. Man bildet nun durch numerische Integration, z. B. mit Hilfe der Simpson-

schen Regel, das Integral über die
$$\left(\frac{\partial \Delta G_z\left(T_c,x\right)}{\partial x}\right)$$
-Werte:

$$\int_{x=0}^{x=1} \left(\frac{\partial \Delta G_z\left(T_c\right)}{\partial x}\right)' dx = \int_{x=0}^{x=1} \frac{\partial \Delta G_z\left(T_c\right)}{\partial x} dx + \int_{x=0}^{x=1} a dx = a.$$
 (16)

Der Wert dieses Integrals liefert die Konstante *a*, die nun von allen $\left(\frac{\partial \Delta G_z(T_c, x_{(i)})}{\partial x}\right)'$ -Werten abzuziehen ist, um zu den richtigen $\frac{\partial \Delta G_z(T_c, x_{(i)})}{\partial x}$ -Werten zu gelangen.

Zur Durchführung der Integration ist eine Extrapolation von $rac{\partial \Delta G_z\left(T_c
ight)}{\partial x}$

für $x \to 1$ und $x \to 0$ nötig. Ist die Mischungslücke über einen hinreichend großen Konzentrationsbereich bekannt, so wird die Extrapolation ohne Schwierigkeiten und mit hinreichender Genauigkeit durchführbar sein^{*}. Erlaubt die Lage der Mischungslücke die Extrapolation der $\frac{\partial \Delta G_z(T_c)}{\partial x}$. Werte nur nach einer Seite, so muß dementsprechend ein $\Delta G_z(T_c)$ -Wert innerhalb des Konzentrationsbereiches der Mischungslücke bekannt sein, um die Konstante c zu bestimmen. Ist die $\frac{\partial \Delta G_z(T_c)}{\partial x}$ -Kurve festgelegt, so erhält man $\Delta G_z(T_c, x)$ durch numerische Integration**:

$$\Delta G_z(T_c, x) = \int_{x=0}^{x} \frac{\partial \Delta G_z(T_c)}{\partial x} \,\mathrm{d}x \,. \tag{17}$$

Die natürlichen Logarithmen der Aktivitätskoeffizienten sind aus den

* Zweckmäßigerweise bildet man den Differenzenquotienten $\frac{\Delta \left(\frac{\partial \Delta G_z \left(T_c\right)}{\partial x}\right)}{\Delta x}$ und extrapoliert diesen für $x \to 0$ und $x \to 1$. Mit den extrapolierten Werten des Differenzenquotienten läßt sich dann die Extrapolation von $\frac{\partial \Delta G_z \left(T_c\right)}{\partial x}$ mit guter Näherung durchführen.

** Um zu den $\Delta G_z(T_c, x)$ -Werten zu gelangen, bedarf es keiner erneuten numerischen Integration; man muß nur von den im Laufe der ersten numerischen Integration gebildeten $\int_0^x \left(\frac{\partial \Delta G_z(T_c)}{\partial x}\right)' dx$ -Werten den Betrag ax abziehen:

$$\Delta G_z(T_c, x) = \int_0^x \left(\frac{\partial \Delta G_z(T_c)}{\partial x}\right)' \mathrm{d}x - ax$$

A. Neckel: [Mh. Chem., Bd. 92

bekannten Werten für $\Delta G_{z}(T_{c})$ und $\frac{\partial \Delta G_{z}(T_{c})}{\partial x}$ nach

$$\ln f_i \left(T_c, x_i \right) = \frac{1}{RT} \cdot \left\{ \Delta G_z \left(T_c, x_i \right) + \left(1 - x_i \right) \cdot \frac{\partial \Delta G_z \left(T_c, x_i \right)}{\partial x_i} \right\}$$
(18)

abzuleiten.

Näherungen für f und d:

Zur exakten Berechnung bedarf es der Kenntnis der Zusatzentropie ΔS_z bei der kritischen Temperatur (T_c) und der Konzentrations- und Temperaturabhängigkeit der Zusatzbeiträge zu den Molwärmen $\Delta C_{p,z}$ im Bereich der Mischungslücke. In vielen Fällen wird man sich jedoch mit Näherungen begnügen können.

Nullte Näherung

Sind $\Delta S_z(T_c)$ und $\Delta C_{p,z}$ sehr klein oder schließt sich die Mischungslücke innerhalb eines relativ kleinen Temperaturintervalls [d. h. $T \ge (T_c - T)$], so wird man die Glieder mit $\Delta S_z(T_c)$ und $\Delta C_{p,z}$ vernachlässigen können.

In diesem Falle erhält man:

$$\begin{split} f &= R \, T \cdot \left\{ x^{\mathrm{I}} \left[\ln x^{\mathrm{I}} - \ln x^{\mathrm{II}} \right] + (1 - x^{\mathrm{I}}) \left[\ln \left(1 - x^{\mathrm{I}} \right) - \ln \left(1 - x^{\mathrm{II}} \right) \right] \right\}, \\ d &= R \, T \cdot \left\{ \ln x^{\mathrm{II}} + \ln \left(1 - x^{\mathrm{I}} \right) - \ln x^{\mathrm{I}} - \ln \left(1 - x^{\mathrm{II}} \right) \right\}. \end{split}$$

Erste Näherung

Kann ΔS_z im Bereich der Mischungslücke als temperaturunabhängig angesehen werden, d. h. ist $\Delta C_{p,z}$ vernachlässigbar klein, so erhält man

$$\begin{split} &f = RT \cdot \left\{ x^{\mathrm{I}} \left[\ln x^{\mathrm{I}} - \ln x^{\mathrm{II}} \right] + (1 - x^{\mathrm{I}}) \cdot \left[\ln \left(1 - x^{\mathrm{I}} \right) - \ln \left(1 - x^{\mathrm{II}} \right) \right] \right\} \\ &+ (T - T_c) \left[\Delta S_z \left(T_c, x^{\mathrm{II}} \right) - \Delta S_z \left(T_c, x^{\mathrm{I}} \right) \right] \\ &- (x^{\mathrm{II}} - x^{\mathrm{I}}) \cdot (T - T_c) \cdot \frac{\partial \Delta S_z \left(T_c, x^{\mathrm{II}} \right)}{\partial x}, \\ &d = RT \cdot \left\{ \ln x^{\mathrm{II}} + \ln \left(1 - x^{\mathrm{I}} \right) - \ln x^{\mathrm{I}} - \ln \left(1 - x^{\mathrm{II}} \right) \right\} \\ &- (T - T_c) \left[\frac{\partial \Delta S_z \left(T_c, x^{\mathrm{II}} \right)}{\partial x} - \frac{\partial \Delta S_z \left(T_c, x^{\mathrm{II}} \right)}{\partial x} \right]. \end{split}$$

Exakte Lösung

$$\begin{split} &f = R \, T \cdot \begin{bmatrix} x^{\mathrm{I}} \left[\ln x^{\mathrm{I}} - \ln x^{\mathrm{II}} \right] + (1 - x^{\mathrm{I}}) \left[\ln (1 - x^{\mathrm{I}}) - \ln (1 - x^{\mathrm{II}}) \right] \right\} \\ &+ (T - T_c) \left[\Delta S_z \left(T_c, x^{\mathrm{II}} \right) - \Delta S_z \left(T_c, x^{\mathrm{I}} \right) \right] - (x^{\mathrm{II}} - x^{\mathrm{I}}) \left(T - T_c \right) \\ &\cdot \frac{\partial \Delta S_z \left(T_c, x^{\mathrm{II}} \right)}{\partial x} + \int_{T_c}^{T} \mathrm{d} T \int_{T_c}^{T} \frac{\Delta C_{p,z} \left(x^{\mathrm{II}} \right)}{T} \, \mathrm{d} T - \int_{T_c}^{T} \mathrm{d} T \int_{T_c}^{T} \frac{\Delta C_{p,z} \left(x^{\mathrm{II}} \right)}{T} \, \mathrm{d} T \\ &- (x^{\mathrm{II}} - x^{\mathrm{I}}) \cdot \int_{T_c}^{T} \mathrm{d} T \int_{T_c}^{T} \frac{\partial}{\partial x} \left[\frac{\Delta C_{p,z} \left(x^{\mathrm{II}} \right)}{T} \right] \mathrm{d} T, \end{split}$$

476

H. 2/1961] Zur Berechnung der freien Mischungsenthalpie

$$\begin{split} d &= R T \cdot \left\{ \ln x^{\mathrm{II}} + \ln \left(1 - x^{\mathrm{I}} \right) - \ln x^{\mathrm{I}} - \ln \left(1 - x^{\mathrm{II}} \right) \right\} \\ &- (T - T_{c}) \left[\frac{\partial \Delta S_{z} \left(T_{c}, x^{\mathrm{II}} \right)}{\partial x} - \frac{\partial \Delta S_{z} \left(T_{c}, x^{\mathrm{I}} \right)}{\partial x} \right] \\ &- \int_{T_{c}}^{T} \mathrm{d}T \int_{T_{c}}^{T} \frac{\partial}{\partial x} \left[\frac{\Delta C_{p, z} \left(x^{\mathrm{II}} \right)}{T} \right] \mathrm{d}T + \int_{T_{c}}^{T} \mathrm{d}T \int_{T_{c}}^{T} \frac{\partial}{\partial x} \left[\frac{\Delta C_{p, z} \left(x^{\mathrm{II}} \right)}{T} \right] \mathrm{d}T. \end{split}$$

Die Leistungsfähigkeit der Methode und der Einfluß der Näherungen soll an zwei Beispielen gezeigt werden.

III. Anwendungsbeispiele

1. System: n-Pentan—Aceton

Das System n-Pentan—Aceton wurde gewählt, weil es nicht nur eine gut untersuchte Mischungslücke^{4, *} besitzt, die sich nahezu über den gesamten Konzentrationsbereich erstreckt, sondern weil auch genaue thermodynamische Daten für dieses Mischungssystem vorliegen. Die den Rechnungen zugrunde gelegten Löslichkeitsdaten sind in Tab. 1 angeführt.

Die Werte für die Zusatzentropie bei der kritischen Lösungstemperatur $\Delta S_z \ (-42,71^{\circ} \text{ C})$ wurden wie folgt gewonnen. Aus den bei W. Rall und Kl. Schäfer⁵ in Tab. 7 b angegebenen Redlich-Kister-Konstanten wurde $\Delta G_z \ (-35^{\circ} \text{ C})$ und auf Grund der bei Kl. Schäfer und F.J. Rohr⁶ angeführten Beziehung (Gl. 19, loc. cit.) die Mischungswärme $\Delta H \ (-35^{\circ} \text{ C})$ berechnet. Aus diesen Daten wurde die Zusatzentropie $\Delta S_z \ (-35^{\circ} \text{ C})$ gewonnen, graphisch ausgeglichen und mit Hilfe der von Kl. Schäfer und F.J. Rohr⁶ angegebenen Gleichung (Gl. 20, loc. cit.) für die Zusatzbeiträge zu den Additivwerten der Molwärme $\Delta C_{p,z}$ auf $-42,71^{\circ} \text{ C}$ extrapoliert. Die für die Rechnungen benützten Werte von $\Delta S_z \ (T_c)$ und $\frac{\partial \Delta S_z \ (T_c)}{\partial x}$ sind in Tab. 1 angeführt.

Die von $\Delta C_{p,z}$ abhängigen Terme wurden auf Grund der bei Kl. Schäfer und F. J. Rohr⁶ angegebenen Gleichung für die Temperaturund Konzentrationsabhängigkeit von $\Delta C_{p,z}$ berechnet. Hierbei wurde die Näherung gemacht, daß die nur für ein Temperaturintervall von $+ 20^{\circ}$ C bis $- 30^{\circ}$ C angegebenen Gleichungen auch bei tieferen Temperaturen Gültigkeit haben.

⁴ H. Wolff und K. Bernstorff, Z. Elektrochem. 62, 1093 (1958).

⁵ W. Rall und Kl. Schäfer, Z. Elektrochem. 63, 1019 (1959).

⁶ Kl. Schäfer und F. J. Rohr, Z. Physik. Chem. N. F. 24, 130 (1960).

^{*} Den Herren Prof. Dr. *Klaus Schäfer*, Prof. Dr. *H. Wolff* und Dr. *K. Bernstorff* sind wir für die freundliche Überlassung der genauen Daten für die Löslichkeitskurve zu großem Dank verpflichtet.

A. Neckel:

[Mh. Chem., Bd. 92

Nr.	x_1^{I}	x_1^{11}	Τ°Κ	$\Delta S_z \left(T_c, x_1^{\mathrm{I}} \right)$	$\Delta S_{z}\left(T_{c}, x_{1}^{\mathrm{II}}\right)$	$\frac{\partial \Delta S_z\left(T_c, x_1^{\mathbf{I}}\right)}{\partial x_1}$	$\frac{\partial \Delta S_z\left(T_c, x_1^{\text{II}}\right)}{\partial x_1}$						
				cal · Grad ⁻¹ · Mol ⁻¹	cal · Grad ⁻¹ · Mol ⁻¹	$cal \cdot Grad^{-1} \cdot Mol^{-1}$	cal · Grad ⁻¹ · Mol ⁻¹						
	0 564	0 504	990 15	0.0720	0.0720	0.001	0.001						
0	0,504	0,004	230,49	0,0730	0,0730	0,061	0,061						
1	0,512	0,608	230,41	0,0090	0,0758	0,008	0,055						
2	0,489	0,619	230,30	0,0680	0,0764	0,072	0,054						
3	0,461	0,660	230,26	0,0656	0,0784	0,076	0,049						
4	0,444	0,677	230,16	0,0643	0,0792	0,079	0,040						
ō	0,414	0,702	229,96	0,0618	0,0801	0,085	0,039						
6	0,393	0,724	229,76	0,0599	0,0808	0,087	0,029						
7	0,367	0,747	229,46	0,0573	0,0811	0,095	0,015						
8	0,348	0,763	229,16	0,0554	0,0813	0,099	0,004						
9	0,326	0,785	228,66	0,0529	0,0809	0,101	-0,015						
10	0,311	0,801	228,16	0,0511	0,0800	0,105	-0,033						
11	0,288	0,825	227, 16	0,0483	0,0780	0,111	-0,065						
12	0,271	0,841	226, 16	0,0462	0,0758	0,115	-0,094						
13	0,256	0,853	225,16	0,0442	0,0735	0,119	0,117						
14	0,233	0,872	223,16	0,0409	0,0695	0,125	0,160						
15	0,213	0,886	221,16	0,0380	0,0658	0,132	-0,200						
16	0,195	0,897	219,16	0,0354	0,0626	0,138	-0,250						
17	0,180	0,906	217,16	0,0330	0,0600	0,144	0,300						
18	0,166	0,913	215,16	0,0312	0,0575	0,148	0,345						
19	0.154	0,919	213, 16	0,0290	0,0555	0,152	-0,395						
20	0,143	0,925	211,16	0,0271	0,0530	0,157	0,445						
21	0.133	0,930	209,16	0,0255	0,0510	0,161	-0,515						
22	0.124	0.934	207.16	0,0237	0,0495	0,165	-0,570						
23	0.116	0.939	205,16	0,0222	0,0470	0,169	-0,625						
24	0.110	0.943	203.16	0.0215	0.0455	0,172	-0,680						
25	0.1033	0.946	201.16	0,0202	0,0440	0.176	-0.715						
26	0.0973	0.950	199.16	0.0190	0,0425	0,179	-0.765						
$\frac{2}{27}$	0.0923	0.953	197.16	0.0180	0,0405	0,181	0,800						
28	0.0880	0.957	195.16	0.0173	0.0375	0.184	0,845						
29	0.0840	0.961	193.16	0.0165	0.0360	0.186	-0.890						

Tabelle 1. System n-Pentan(1)—Aceton(2). Zur Berechnung von $\Delta G_z(T_c)$ verwendete Daten

Die auf Grund dieser Daten in nullter, erster und zweiter Näherung berechneten Werte für $\frac{\partial \Delta G_z(T_c)}{\partial x}$ sind in Tab. 2 und Abb. 4 wiedergegeben. Hierbei ist die "2. Näherung" nur insoferne eine Näherung, als die für $+ 20^{\circ}$ C bis $- 30^{\circ}$ C geltende Beziehung für $\Delta C_{p,z}$ auch für tiefere Temperaturen als gültig angesehen wurde. Die extrapolierten Bereiche von $\frac{\partial \Delta G_z(T_c)}{\partial x}$ sind in Abb. 4 strichliert eingezeichnet. Aus Abb. 4 geht deutlich hervor, daß sich die verschiedenen Näherungen nur in den

478

Tabelle 2. System n-Pentan (1)—Aceton (2). $\frac{\partial \Delta G_{z}(T_{c})}{\partial x_{1}} \text{ und } \Delta G_{z}(T_{c}) \cdot \text{Werte}$

	<u>ә д</u>	$\frac{G_z(T_c)}{\partial x_c}$ cal·Mo	.]-1	ΔG_{z}	(T_c) cale	Mol ^{_1}		
x_1		Näherung			Näherung			
	0-te	1-te	2-te	0-te	1-te	2-te	lg ₁	$\lg j_2$
0.000	1155.0	1143.2	1174.7	0.0	0.0	0.0	1 1 1 4 4	0.0000
0.010	1129.0	1117.2	1146.7	11.4	11.3	11.6	1 0880	0,0001
0.020	1103.0	1091.2	1117.7	22.6	22.3	22.9	1,0609	0,0005
0,030	1077.0	1065.2	1088.7	33.4	33.1	34.0	1 0340	0.0012
0,040	1051,0	1039.2	1061.7	44.1	43.6	44.7	1,0093	0.0021
0,050	1025.0	1013.2	1032.7	54.5	53.9	55.2	0.9830	0.0033
0,060	999.0	988.2	1004.7	64.6	63.9	65.4	0.9579	0.0048
0,070	973.0	962.2	975.7	74.4	73.7	75.3	0.9322	0.0066
0,080	947.0	936.2	947.7	84.0	83.2	84.9	0,9077	0.0086
0,084	936,5	928.2	938.5	87.8	86.9	88.4	0.8994	0.0091
0,088	921,2	913.2	926.0	91.6	90.6	92.4	0.8889	0.0103
0,092	910,6	902,9	914.3	95,5	94,5	96.3	0.8787	0.0113
0,097	897,1	889,9	899,9	100.0	99.0	100.9	0.8663	0.0126
0,103	880,0	873,1	882,0	105,3	104,2	106.2	0.8511	0.0143
0,110	860,7	854,2	862,1	111,2	110,0	112,0	0.8341	0.0163
0,116	845,2	839,2	845,7	116,3	115,1	117.1	0.8203	0.0181
0,124	822,7	817,1	822,0	123,0	121,7	123.8	0.8006	0.0208
0,133	797,8	792,4	796,2	130,2	129,0	131.1	0.7792	0.0239
0,143	770,6	765, 6	768,7	138,1	136,8	138,9	0.7568	0.0275
0,154	742,0	737,2	739,8	146,4	145,0	147,2	0,7335	0,0316
0,166	711,5	707,0	709,2	155,1	153,7	155,9	0,7091	0.0362
0,180	67,6,1	671,9	673,7	164,8	163, 3	165, 6	0,6812	0,0420
0,195	640,1	636,2	637,8	174,7	173,2	175,4	0,6535	0,0484
0,213	598,2	594,5	595,8	185,9	184,2	186,5	0,6217	0,0566
0,233	552,9	549,5	550,5	197,4	195,7	198,0	0,5884	0,0661
0,256	502,9	499,8	500, 5	209,5	207,8	210,1	0,5526	0,0777
0,271	470,8	467,7	468,4	216,8	215,0	217,3	0,5301	0,0858
0,288	435,2	432,2	432,8	224,5	222,7	225,0	0,5058	0,0952
0,311	387,8	384,9	385,4	234,0	232,0	234,4	0,4743	0,1087
0,326	357,5	354,6	355,1	239,5	237,6	240,0	0,4547	0,1178
0,348	313,6	310,7	311,3	246,9	244,9	247,3	0,4271	0,1318
0,367	276,4	273,5	274,0	252,5	250,5	252,8	0,4044	0,1445
0,393	226,5	223,7	224,2	259,1	256,9	259,3	0,3751	0,1624
0,414	186,9	184,1	184,6	263,4	261,2	263, 6	0,3527	0,1776
0,444	131,2	128,3	128,8	268,2	265,9	268,3	0,3225	0,2003
0,461	99,8	97,0	97,5	270,2	267,8	270,2	0,3062	0,2137
0,489	48,6	45,8	46,3	272,2	269,8	272,2	0,2807	0,2368
0,512	6,6	3,7	4,2	272,9	270,4	272,8	0,2608	0,2568
0,004		91,8	91,3	270,7	268,1	270,6	0,2189	0,3056
0,008	-172,3	-175,2	- 174,7	265,0	262,2	264,7	0,1862	0,3519
0,019	193,0	- 196,4	- 196,0	263,0	260,2	263,6	0,1792	0,3651
0,000	219,0	277,9	— 277,4	253,4	250,4	253,0	0,1505	0,4137

<i>x</i> ₁	92	$\frac{G_z(T_c)}{\partial x_1} \text{ cal} \cdot \mathbf{M}$	ol ⁻¹	ΔG_z	(T_c) cal \cdot	Mol ⁻¹		
	0-te	1-te	2-te	0-te	1-te	2-te	$\lg f_1$	$\lg f_{\mathfrak{s}}$
							1	
0,677	310,0	312,8	312,4	248,4	245,4	248,0	0,1395	0,4359
0,702	-363,2	— 366,0	365,5	240,0	236,9	239,5	0,1264	0,4706
0,724	412,0	414,8	414,4	231,4	228,4	230,9	0,1106	0,5037
0,747	-465,5	468,3	- 467,9	221,4	218,2	220,8	0,0971	0,5410
0,763	504,4	507,2	506,7	213,6	210,4	213,0	0,0881	0,5688
0,785	560,6	- 563,4	-562,9	201,9	198, 6	201,2	0,0761	0,6101
0,801	- 603,8	-606,5	606,0	192,6	189,3	191,8	0,0676	0,6425
0,825	-672,9	-675,4	- 675,0	177,2	173,9	176,5	0,0554	0,6957
0,841	722,0	- 724,4	- 723,9	166,1	162,7	165,3	0,0476	0,7344
0,853	-760,6	- 762,9	-762,4	157,2	153,8	156,4	0,0420	0,7653
0,872	- 825,8	-827,7	-827,2	142,1	138,6	141,3	0,0336	0,8183
0,886	-876,8	- 878,4	877,9	130,2	126,7	129,3	0,0278	0,8606
0,897	- 919,4	-920,4	919,9	120,3	116,8	119,5	0,0234	0,8961
0,906	-955,4	-956,0	955,5	111,9	108, 4	111,0	0,0201	0,9265
0,913	-983,2	980,1	982,7	105,1	101,7	104,2	0,0178	0,9500
0,919	1008,1	1003,3	1007,0	99,1	95,7	98,3	0,0158	0,9711
0,925	-1034,2	1027,6	-1032,4	93,0	89,6	92,1	0,0140	0,9934
0,930	- 1055,8	1046,8	- 1052,9	87,8	84,4	86,9	0,0125	1,0114
0,934	-1072,2	1060,8	1068,4	83,5	80,2	82,7	0,0115	1,0251
0,939	- 1096,6	- 1082,6	- 1091,8	78,1	74,8	77,3	0,0101	1,0459
0,943	-1115,2	1098,7	1109,7	73,7	70,5	72,9	0,0091	1,0619
0,946	-1127,2	- 1108,0	1120,7	70,3	67,2	69,5	0,0086	1,0717
0,950	- 1149,1	-1126,7	-1142,0	65,8	62,7	65,0	0,0075	1,0909
0,953	- 1163,1	- 1138,3	-1156,1	62,3	59,3	61, 6	0,0068	1,1036
0,957	1187,6	1159,7	1180,4	57,6	54,7	56,9	0,0058	1,1256
0,961	-1216,4	- 1177,9	- 1201,5	52,8	50,0	52,1	0,0050	1,1448
0,970	-1275,0	- 1219,8	-1255,3	41,6	39,3	41,1	0,0032	1,1941
0,980	1350,0	-1277,8	-1327,3	28,4	26,8	28,2	0,0015	1,2607
0,990	-1423,0	— 1335,8	1405,3	14,6	13,7	14,5	0,0004	1,3199
1,000	- 1491,0	— 1404,8	— 1493,3	0,0	0,0	0,0	0,0000	1,4167

Randbereichen und auch hier nur unwesentlich unterscheiden. Die durch numerische Integration nach der Simpsonschen Formel gewonnenen Werte von $\Delta G_z (T_c)$ sind in Tab. 2 und Abb. 5 angeführt. Zum Vergleich sind in Abb. 5 experimentelle Werte für ΔG_z (-42,71° C) eingezeichnet, die durch Extrapolation von ΔG_z (-35° C) – berechnet auf Grund der bei W. Rall und Kl. Schäfer⁵ angegebenen Redlich-Kister-Konstanten – mit Hilfe von ΔS_z (-35° C) und $\Delta C_{p,z}$ gewonnen worden sind. Die Abweichungen der nach der hier vorgeschlagenen Methode berechneten gegenüber den experimentellen ΔG_z -Werten, betragen maximal 7 cal/Mol. Die ΔG_z -Kurve zeigt eine etwas stärkere Asymmetrie als die aus den Dampfdruckmessungen erhaltene. In Tab. 2 sind ferner Werte für die dekadischen Logarithmen der Aktivitätskoeffizienten f_i , die auf Grund der zweiten Näherung berechnet wurden, angeführt. Dieses Beispiel zeigt, daß man bei Systemen, deren Zusatzentropie ΔS_z (T_c) klein ist und deren Mischungslücke sich innerhalb eines relativ

Die in nullter Näherung berechneten Werte für $\frac{\partial \Delta G_Z(T_c)}{\partial x_1}$ fallen in dieser Darstellung praktisch mit denen der zweiten Näherung zusammen. — Die extrapolierten Bereiche sind strichliert gezeichnet

Abb. 5. Freie Zusatzenthalpie $\Delta G_Z(T_c)$ des Systems n-Pentan (1)—Aceton (2) 0

2. Näherung 1. Näherung 2. Näherung experimentelle Werte, berechnet auf Grund von Dampfdruckmessungen von W. Rall und Kl. Schäfer⁵

Die in nullter Näherung berechneten Werte für $\Delta G_Z(T_c)$ fallen in dieser Darstellung praktisch mit denen der zweiten Näherung zusammen

H. 2/1961] Zur Berechnung der freien Mischungsenthalpie

kleinen Temperaturintervalls schließt, schon mit Hilfe der nullten Näherung zu befriedigenden Werten für $\Delta G_z (T_c)$ gelangen kann.

2. System: Nickel-Gold

Das System Nickel—Gold besitzt eine Mischungslücke im festen Zustand, die bereits von vielen Forschern⁷ untersucht wurde. Der genaue Verlauf der Entmischungskurve ist jedoch nur in der Umgebung des kritischen Punktes, vor allem durch die Arbeit von A. Münster und K. Sagel⁸, mit hinreichender Genauigkeit bestimmt worden. Im übrigen Bereich ist die Entmischungskurve nicht mit ebensolcher Sicherheit bekannt. Für die Berechnung der freien Zusatzenthalpie wurden die vorliegenden Werte graphisch ausgeglichen. Sie sind in Tab. 3 zusammengefaßt. Als tiefste Temperatur wurde 340° C gewählt, um nicht in den Bereich der magnetischen Umwandlung zu gelangen. Ferner wurde angenommen, daß im Bereich homogener Mischkristalle keine Umwandlungen auftreten⁹. Die benötigten $\Delta C_{p,z}$ -Werte wurden nach einer Formel berechnet, die wir Herrn Dr. R. A. Oriani¹⁰ verdanken.

⁷ W. Fraenkel und A. Stern, Z. anorg. Chem. **166**, 161 (1927); G. Grube und F. Vaupel, Z. physik. Chem., Bodenstein-Festband, 187 (1931); W. Köster und W. Dannöhl, Z. Metallkde. **28**, 248 (1936); E. M. Wise, Trans. Amer. Inst. Mining metallurg. Engng. **83**, 384 (1939); W. Gerlach, Z. Metallkde. **40**, 231 (1949); L. L. Seigle, M. Cohen und B. L. Averbach, J. Metals **4**, 1320 (1952).

⁸ A. Münster und K. Sagel, Z. physik. Chem. N. F. 14, 296 (1958).

⁹ Vgl. aber: V. V. Sanadze und G. V. Gulyaev, Kristallografiya 4, 526, 687 (1959).

¹⁰ Herr Dr. R. A. Oriani hat die spezif. Wärmen einer Ni—Au-Legierung der Zusammensetzung Au_{0,517}Ni_{0,483} im Temperaturbereich von 299,4° K bis 373,4° K und 1075,8° K bis 1189,8° K bestimmt (R. A. Oriani, Acta Metallurgica **3**, 232 [1955]). Auf Grund der von ihm gemessenen Enthalpieänderung zwischen 373° K und 1076° K $\Delta [\Delta H]_{373}^{1076}$ hat er eine Interpolationsformel für $\Delta C_{p,z}$ für diesen Temperaturbereich entwickelt, für deren freundliche Überlassung wir Herrn Dr. R. A. Oriani zu großem Dank verpflichtet sind. Die nach dieser Formel berechneten $\Delta C_{p,z}$ -Werte beziehen sich auf reines (nichtmagnetisches) β -Nickel. Oriani weist darauf hin, daß die Interpolationsformel das Gebiet höherer Temperaturen etwas überbewertet. Für die vorliegende Berechnung wurde ferner näherungsweise angenommen, daß die Konzentrationsabhängigkeit von $\Delta C_{p,z}$ durch einen parabolischen Verlauf, d. h. durch $\Delta C_{p,z} = \text{prop. } x (1-x)$ wiedergegeben werden kann. Die Formel für $\Delta C_{p,z}$ nimmt dann die Gestalt:

$$\Delta C_{p,z} = \frac{1}{0.517 \cdot 0.483} \cdot \left\{ 0.175 + 0.313 \cdot 10^{-3} \cdot T + 0.292 \cdot \sin \frac{2\pi (899 - T)}{703} \right\} x (1 - x) \text{ cal. } \text{Grad}^{-1} \cdot \text{g-Atom}^{-1}$$

an. Da die $\Delta C_{p, z}$ -enthaltenden Terme nur den Charakter von Korrekturen haben, werden die oben eingeführten Näherungen keinen wesentlichen Fehler in $\Delta G_z (T_e)$ bedingen.

Monatshefte für Chemie, Bd. 92/2

	Tabelle 3.	System	Nickel(1)-	-Gold(2). Zur F	3erechnung von Δ	$G_{\mathbf{z}}(T_c)$ verwende	te Daten
Nr.	$\mathbf{I}_{\mathbf{x}}^{T}$	x_1^{Π}	t° C	$\Delta ~ \mathcal{S} \left(T_c, ~ x_1^{\mathrm{I}} ight)$ cal \cdot Grad ⁻¹ \cdot g-Atom ⁻¹	$\Delta \ S \left(T_{\mathcal{O}} \ x_1^{\text{II}} ight)$ $\alpha \ \text{all} \left(T_{\mathcal{O}} \ x_1^{\text{II}} ight)$	$\frac{\partial \Delta S_{\mathbf{z}} \left(T_{c}, x_{1}^{\mathrm{T}} \right)}{\partial x_{1}}$ cal · Grad ⁻¹ · g-Atom ⁻¹	$\frac{\partial \Delta S_{Z}\left(T_{c}, x_{1}^{\text{II}}\right)}{\partial x_{1}}$ cal · Grad ⁻¹ · g-Atom ⁻¹
	0404.0	0 4080	6 0 10	0 9E00	0.9600		
	0,1000 0.6875	0,7000	809 809	0,3685 0.3685	0,3000 03250		
101	0,6760	0,7370	808	0,3790	0.3170	-0.902	-1.062
ŝ	0,6630	0,7530	806	0,4110	0,3000	-0,856	-1,090
4	0,6460	0,7630	804	0,4060	0,2885	-0.790	-1,106
Ð	0,6330	0,7730	802	0,4160	0,2770	0,735	-1,120
9	0,6220	0,7800	800	0,4240	0,2690	-0,690	-1,130
7	0,6120	0,7880	798	0,4310	0,2600	0.645	-1,140
œ	0,5985	0,8040	794	0,4400	0,2407	-0.588	1,158
6	0,5860	0,8180	190	0,4465	0,2235	0,521	-1,170
10	0,5710	0,8280	786	0,4540	0,2110	0,450	-1,180
11	0,5540	0,8420	780	0,4608	0,1945	0,359	-1,191
12	0,5405	0,8520	775	0,4655	0,1820	0,285	-1,200
13	0,5280	0,8610	770	0,4690	0,1700	0,220	-1,208
14	0,5030	0,8780	760	0,4735	0,1490	-0.074	-1,219
15	0,4800	0,8915	750	0,4730	0,1325	0,063	-1,225
16	0,4586	0,9020	740	0,4695	0,1200	0,190	-1,230
17	0,4379	0,9100	730	0,4642	0,1100	0,300	-1,233
18	0,4175	0,9170	720	0,4575	0,1015	0,408	-1,236
19	0,3975	0,9220	710	0,4482	0,0955	0,510	-1,239

484

A. Neckel:

1,240	1,240	-1,241	1,241	-1,242	-1,243	1,244	-1,245	-1,246	1,247	-1,248	1,249	1,250	-1,250	1,250	-1,250	-1,251	-1,251	- 1,251	1,252	1,252	-1,252	-1,253	-1,253	-1,253	1,254	1,254	1,255	-1,255
0,604	0,695	0.770	0.842	0,910	0,962	1,005	1,044	1,078	1,106	1,131	1,153	1,174	1,192	1,209	1,223	1,238	1,251	1,263	1,274	1,285	1,303	1,322	1,340	1,354	1,370	1,381	1,391	1,400
0,0900	0,0855	0,0800	0,0763	0,0725	0,0690	0,0655	0,0620	0,0596	0,0573	0,0550	0,0535	0,0512	0,0491	0,0472	0,0453	0,0436	0,0420	0,0405	0,0390	0,0375	0,0348	0,0321	0,0296	0,0272	0,0248	0,0223	0,0201	0,0178
0,4373	0,4250	0,4130	0,4010	0,3847	0,3707	0,3580	0,3447	0,3320	0,3200	0,3080	0,2970	0,2865	0,2760	0,2658	0,2555	0,2465	0,2370	0,2283	0,2200	0,2120	0, 1965	0,1825	0,1680	0,1554	0,1425	0,1300	0,1230	0,1085
700	690	680	670	660	650	640 - 640	630	620	610	600	590	580	570	560	550	540	530	520	510	500	480	460	440	420	400	380	360	340
0,9265	0,9306	0,9343	0,9377	0,9409	0,9438	0,9465	0,9490	0,9513	0.9534	0,9554	0,9573	0,9591	0,9608	0,9623	0,9638	0,9652	0,9665	0,9677	0,9689	0,9700	0,9722	0,9743	0,9763	0,9782	0,9801	0,9820	0,9838	0.9856
0,3780	0,3590	0,3420	0,3250	0,3080	0,2930	0,2800	0,2670	0,2550	0,2440	0,2330	0,2230	0,2135	0,2045	0,1960	0,1880	0,1804	0,1731	0,1662	0,1596	0,1533	0,1413	0,1299	0,1191	0,1091	0,0997	0,0909	0,0829	0,0755
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48

32*

485

Die benötigten Werte für ΔS_z (810,3° C) wurden wie folgt gewonnen. R. A. Oriani und W. K. Murphy¹¹ haben Mischungswärmen ΔH in den Randbereichen des Systems Ni-Au bei 640°C gemessen. Auf Grund eines $\Delta H/x_1 \cdot x_2$ -Diagrammes wurden ΔH -Werte für mittlere Konzentrationen interpoliert. Die so erhaltenen Mischungswärmen bei 640°C wurden mit Hilfe der Formel für $\Delta C_{p,z}$ auf 810,3° C umgerechnet. Aus den $\Delta H (810,3^{\circ} \text{ C})$ -Werten und den in nullter Näherung erhaltenen Werten für ΔG_z (810,3° C) wurde ein erster Näherungswert für ΔS_z (810,3° C) gebildet und mit diesem ΔG_z (810,3° C) in zweiter Näherung berechnet. Diese Werte von ΔG_z (810,3° C) wurden herangezogen, um verbesserte Werte für ΔS_z (810,3° C) zu erhalten. Die für die Berechnungen benützten Werte für $\Delta S_z(T_c)$ und $\frac{\partial \Delta S_z(T_c)}{\partial x}$ sind in Tab. 3 angeführt. In Tab. 4 und Abb. 6 sind die in nullter, erster und zweiter Näherung gewonnenen Werte für $\frac{\partial \Delta G_z(T_c)}{\partial x}$ dargestellt. Da sich die Mischungslücke innerhalb eines sehr großen Temperaturintervalls schließt und auch die Werte für $\Delta S_z(T_c)$ und $\Delta C_{p,z}(T_c)$ beträchtlich sind, unterscheiden sich die in nullter, erster und zweiter Näherung erhaltenen $\frac{\partial \Delta G_z(T_c)}{\partial x}$ -Werte stärker als bei dem System *n*-Pentan—Aceton. Die extrapolierten Bereiche der $\frac{\partial \Delta G_z(T_c)}{\partial x}$ -Kurven sind in Abb. 6 strichliert eingezeichnet. Die Aufwärtskrümmung der $\frac{\partial \Delta G_z(T_e)}{\partial x}$ -Kurve (Abb. 6) im Bereich hoher Ni-Konzentrationen ist auf den überaus steilen Abfall der Entmischungskurve in diesem Gebiet zurückzuführen. Möglicherweise wurde hier keine vollständige Gleichgewichtseinstellung erreicht. Das Umbiegen der ersten Näherung der $\frac{\partial \Delta G_z(T_e)}{\partial x}$ -Kurve im Bereich geringer Ni-Konzentrationen ist durch die Vernachlässigung der $\Delta C_{p,z}$ enthaltenden Terme bedingt. Die durch numerische Integration erhaltenen $\Delta G_z(T_c)$ -Werte sind in Tab. 4 und Abb. 7 wiedergegeben. Trotz des großen Temperaturintervalles und der nicht zu vernachlässigenden Werte von ΔS_z (T_e) und $\Delta C_{p,z}$ unterscheiden sich die in nullter und zweiter Näherung gewonnenen $\Delta G_z(T_c)$ -Werte in mittleren Konzentrationsbereichen lediglich um 9%. Zweifellos bedingen die benützten Näherungen für $\Delta S_z(T_c)$ und $\Delta C_{p,z}$ nur einen kleinen Fehler. Die größte Fehlermöglichkeit bei diesem System liegt in der mangelhaften Kenntnis des Verlaufs der Löslichkeitskurve. Um zu höheren Werten für $\Delta G_z(T_c)$ zu gelangen, müßte die gegenseitige Löslichkeit, vor allem bei tieferen Temperaturen, geringer

¹¹ R. A. Oriani und W. K. Murphy, Acta Metallurgica 8, 23 (1960)

Tabelle 4. System Nickel (1)-Gold (2)

	$\frac{\partial \Delta G_z}{\partial a}$	$\frac{(T_c)}{c_1}$ cal · g-At	ΔG_{Z}	$\Delta G_{z}(T_{c}) ext{ cal } \cdot ext{g-Atom}^{-1}$				
x_1		Näherung			Näherung			
	0-te	1-te	2-ta	0-te	1-te	2-te		
0.0000	3337	2219	2707	0	0	. <u>0</u> .		
0.0200	3287	2306	2695	66	45	54		
0.0400	3231	2382	2681	131	92	108		
0.0600	3171	2443	2662	195	140	161		
0.0755	3120	2476	2641	244	179	202		
0.0829	3101	2488	2631	267	197	222		
0.0909	3074	2499	2620	292	217	243		
0.0997	3039	2498	2599	319	239	266		
0.1091	2999	2494	2576	347	262	290		
0.1191	2953	2484	2549	377	287	316		
0.1299	2901	2468	2518	409	314	343		
0.1413	2844	2448	2485	441	342	372		
0.1533	2782	2422	2447	475	371	401		
0.1596	2749	2407	2427	492	386	417		
0.1662	2713	2390	2402	511	402	432		
0.1731	2673	2368	2378	529	419	449		
0.1804	2633	2346	2352	548	436	466		
0.1880	2589	2321	2323	568	454	484		
0,1960	2541	2291	2289	589	472	502		
0.2045	2489	2259	2253	610	491	522		
0.2135	2433	2222	2213	632	512	542		
0.2230	2372	2181	2170	655	532	563		
0.2330	2308	2137	2122	679	554	584		
0.2440	2236	2084	2067	704	577	607		
0.2550	2165	2034	2014	728	600	630		
0.2670	2085	1974	1953	753	624	653		
0.2800	1998	1908	1886	780	649	678		
0,2930	1911	1843	1819	805	674	702		
0,3080	1809	1763	1737	833	701	729		
0,3250	1690	1668	1641	863	730	758		
0,3420	1573	1574	1546	891	757	785		
0,3590	1457	1481	1452	916	783	810		
0,3780	1325	1372	1342	943	810	837		
0,3975	1189	1258	1227	967	836	862		
0,4175	1049	1139	1107	990	860	885		
0,4379	906	996	965	1010	882	906		
0,4586	758	888	856	1027	901	925		
0,4800	604	751	719	1041	919	942		
0,5030	433	596	564	1053	934	957		
0,5280	243	420	387	1062	947	969		
0,5405	146	329	296	1064	952	973		
0,5540	39	227	195	1065	955	976		

 $\frac{\partial \Delta G_{z} \left(T_{c} \right)}{\partial x_{1}} \text{- und } \Delta G_{z} \left(T_{c} \right) \text{-Werte}$

A. Neckel:

	$\frac{\partial \Delta G}{\partial A}$	$\frac{z(T_c)}{r_c}$ cal · g-A	tom ¹	ΔG_{z} (2	T_c) cal·g-A	tom ⁻¹
x_1	Ū	Näherung			Näherung	
	0-te	1-te	2-te	0-te	1-te	2-te
0,5710	— 99	95	63	1065	958	979
0,5860	224	$-\!-\!26$	59	1063	959	979
0,5985	-329	129	- 161	1059	958	977
0,6120	446	243	- 275	1054	955	974
0,6220	— 534	330	363	1049	952	971
0,6330	-633	427	- 460	1043	948	967
0,6460	- 753	547	- 580	1034	942	960
0,6630	- 912	706	739	1019	931	949
0,6760	1038	831	864	1007	921	938
0,6875	-1152	944	977	994	911	928
0,7060	1338	1131	- 1163	971	892	908
0,7300	-1595	1388		936	862	877
0,7370	-1672	1464	- 1497	924	851	867
0,7530	-1851	1644	1676	896	827	841
0,7630	-1967	-1760	-1792	877	810	824
0,7730	-2086	-1877	1910	857	792	805
0,7800	-2171	-1962	-1995	842	778	792
0,7880	-2269	-2061	-2093	824	762	775
0,8040	-2475	-2265	-2298	786	727	740
0,8180	-2664	-2453	-2486	750	694	707
0,8280	-2803	-2592	-2625	723	669	681
0,8420	3008	-2794	-2827	682	631	643
0,8520	-3161	-2945	-2978	651	603	614
0,8610	-3304	3087	3120	622	576	587
0,8780	-3593	3372	3405	564	521	931 409
0,8915	-3840	3615	3648	514	474	483
0,9020	4043		- 3847	472	430	444
0,9100	- 4203		-4003	439	403	410 904
0,9170	- 4347	4109		409	373	004 969
0,9220			4238	387	004 005	304 944
0,9265	4537	4287		307	000 910	296
0,9306			- 4399	348	901 901	320
0,9343		4429	- 4400	001 915	986	204
0,9377			- 4527	200	200	204
0,9409		4044	4080	906	212	266
0,9438	4877	4092	- 4032	280	200	254
0,9405		4054 4670	- 4075 4713	272	234	242
0,9490		4700	- 4745	200	224	231
0,5515	5011	4724	4770	238	214	$\frac{1}{221}$
0,9554	5073	4745	4793	228	204	212
0.9573	5100	4762	-4813	218	195	203
0.9591	5124	4777	4830	209	187	194
0.9608	5145	4788	-4844	200	178	186
0,9623	5157	4791	-4850	193	171	178
0,9638	5170	4794	-4856	185	164	171
	* · · · · · · · · · · · · · · · · · · ·					

<u></u>	$\partial \Delta G$	$\frac{z(T_c)}{x_1}$ cal·g-A	$\Delta G_z(T_c)$ cal·g-Atom ⁻¹					
x_1		Näherung			Näherung			
	0-te	1-te	2-te	0-te	1-te	2-te		
0,9652	-5179	- 4793	- 4858	178	157	164		
0,9665	5186	-4790	-4859	171	151	158		
0,9677	-5187	-4773	-4851	165	145	152		
0,9689	-5185	-4769	-4846	158	140	146		
0,9700	-5181	-4754		153	134	141		
0,9722	5174	-4726	-4809	141	124	130		
0,9743	5164	-4695	-4799	130	114	120		
0,9763	-5149	4658	-4776	120	105	111		
0,9782	5131	4618	-4751	110	96	102		
0,9801	-5115	-4579	-4729	101	87	93		
0,9820	5102	-4544	-4712	91	78	84		
0,9838	5088	-4508	-4696	82	70	75		
0,9856	5079	4475	-4685	73	62	67		
0,9900	5052	-4385	-4655	50	43	46		
1,0000	5005	-4175	-4603	0	0	0		

sein. L. L. Seigle, M. Cohen und B. L. Averbach¹² haben auf Grund von Messungen elektromotorischer Kräfte ΔG_z für dieses System bei 850° C und 900° C bestimmt. Trotz der höheren Temperatur finden diese Autoren jedoch höhere Werte für die freie Zusatzenthalpie. So erhielten sie beispielsweise für $x_{\rm Ni} = 0.5$ bei 900° C für ΔG_z etwa 1025 cal. g-Atom⁻¹.

Die ΔG_z -Kurve ist asymmetrisch u. zw. sind die ΔG_z -Werte für Ni-Konzentrationen $x_{\rm Ni} > 0.5$ stets höher als für die gleichen Goldkonzentrationen. Die gleiche Tendenz dürften auch die von *R. A. Oriani* und *W. K. Murphy*¹¹ gemessenen Mischungswärmen aufweisen.

Die Systeme n-Pentan—Aceton und Nickel—Gold zeigen, daß die vorgeschlagene Methode vorzüglich geeignet ist, die freie Zusatzenthalpie ΔG_z für beschränkt mischbare binäre Systeme, deren Löslichkeitskurve mit hinreichender Genauigkeit bekannt ist, zu bestimmen. Aus den Beispielen geht auch hervor, daß es vielfach möglich sein wird, schon auf Grund der nullten Näherung zu guten Näherungswerten für die freie Zusatzenthalpie ΔG_z zu gelangen.

Dem Vorstand des Institutes für Physikalische Chemie der Universität Wien, Herrn Prof. Dr. *H. Nowotny*, danke ich für wertvolle Ratschläge und zahlreiche Diskussionen.

Herr A. Marksteiner hat mich bei der Ausführung der numerischen Rechnungen in dankenswerter Weise unterstützt.

Dem "Theodor-Körner-Stiftungsfonds" bin ich für die Förderung, die er mir zuteil werden ließ, zu großem Dank verpflichtet.

¹² L. L. Seigle, M. Cohen und B. L. Averbach, J. Metals 4, 1320 (1952).